Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 21 images found }

Loading ()...

  • A 50 year old Somalian woman being examined in Hargeisa, Somaliland, by Dr. Chris Giannou of the International Committee of the Red Cross, after losing her leg to a landmine while herding her cattle. Somaliland is the breakaway republic in northern Somalia that declared independence in 1991 after 50,000 died in civil war. March 1992.
    SOM_38_xs.jpg
  • A Somalian child recovering in the hospital after being blinded and injured while playing with a landmine in Hargeisa, capital of Somaliland. The three leading causes of death in Somalia are gastro-enteritis, T.B. and trauma, mostly from land mines, gun shots, and car accidents. Somaliland is the breakaway republic in northern Somalia that declared independence in 1991 after 50,000 died in civil war. March 1992.
    SOM_42_xs.jpg
  • A young Somalian girl recovering the hospital after losing her leg to a landmine in Hargeisa, capital of Somaliland, an unrecognized breakaway Republic of Somalia. The three leading causes of death in Somalia are gastro-enteritis, T.B. and trauma, mostly from land mines, gun shots, and car accidents. March 1992.
    SOM_41_xs.jpg
  • Flanked by the animatronic robots created in his workshops, Steve Jacobsen, an engineering professor at the University of Utah in Salt Lake City, may be the world's most entrepreneurial roboticist-he's spun off four companies from his research and discoveries. Perhaps the most important product he makes is the Utah Artificial Arm (above Jacobsen's head), a high-tech prosthetic hand used by thousands of amputees around the world. From the book Robo sapiens: Evolution of a New Species, page 216-217.
    USA_rs_427_120_qxxs.jpg
  • A rancher in Halfway, Oregon, Bob Goodman lost his arm below his elbow in a freak accident. Researchers at the University of Utah attached a myoelectric arm, which he controls by flexing the muscles in his arm that are still intact. Sensors on the inside of the prosthetic arm socket pick up the faint electrical signals from the muscles and amplify them to control the robot arm. In this way, Goodman can cook his dinner and do his chores, just as he did before the accident. From the book Robo sapiens: Evolution of a New Species, page 179 bottom.
    USA_rs_394_qxxs.jpg
  • A rancher in Halfway, Oregon, Bob Goodman lost his arm below his elbow in a freak accident. Researchers at the University of Utah attached a myoelectric arm, which he controls by flexing the muscles in his arm that are still intact. Sensors on the inside of the prosthetic arm socket pick up the faint electrical signals from the muscles and amplify them to control the robot arm. In this way, Goodman can cook his dinner and do his chores, just as he did before the accident. From the book Robo sapiens: Evolution of a New Species, page 179 top.
    USA_rs_392_qxxs.jpg
  • Bob Goodman, a rancher in Halfway, Oregon, lost his arm in a freak accident. Researchers at the University of Utah gave him a myoelectric arm, which he controls by flexing the muscles in his arm that are still intact. Sensors on the inside of the prosthetic arm socket pick up the faint electrical signals from the muscles and amplify them to control the robot arm. In this way, Goodman can do most things as he did before his accident. Seen here cutting his meat while having lunch with his girlfriend at a café in Halfway, Oregon.
    USA_SCI_MEARM_393_xs.jpg
  • Bob Goodman, a rancher in Halfway, Oregon, lost his arm in a freak accident. Researchers at the University of Utah gave him a myoelectric arm, which he controls by flexing the muscles in his arm that are still intact. Sensors on the inside of the prosthetic arm socket pick up the faint electrical signals from the muscles and amplify them to control the robot arm. In this way, Goodman can do most things as he did before his accident. Here he is using a pitchfork to throw hay over the fence to his horses.
    USA_SCI_MEARM_03_xs.jpg
  • Robotic autonomous-control technology will become more and more useful to the disabled in the future, as Hugh Herr can testify. A double amputee, MIT Leg Lab researcher Herr is developing a robotic knee. Standard prosthetic joints cannot sense the forces acting on a human leg. But a robotic knee can sense and react to its environment, allowing amputees to walk through snow or on steep slopes now impassable for them. Cambridge, MA. From the book Robo sapiens: Evolution of a New Species, page 181.
    USA_rs_94_qxxs.jpg
  • Bill Haeck of Rock Springs, Wyoming is an avid hunter who relies on his artificial myoelectric arm to continue his hobby after losing his arm in an accident.  Researchers at the University of Utah gave him a myoelectric arm, which he controls by flexing the muscles in his arm that are still intact. Sensors on the inside of the prosthetic arm socket pick up the faint electrical signals from the muscles and amplify them to control the robot arm. In this way, Haeck can do most things as he did before his accident but he often forgets to charge the battery. Seen here target shooting behind his house.
    USA_SCI_MEARM_08_xs.jpg
  • Bob Goodman, a rancher in Halfway, Oregon, lost his arm in a freak accident. Researchers at the University of Utah gave him a myoelectric arm, which he controls by flexing the muscles in his arm that are still intact. Sensors on the inside of the prosthetic arm socket pick up the faint electrical signals from the muscles and amplify them to control the robot arm. In this way, Goodman can do most things as he did before his accident. Here he is arm-wrestling with a neighbor in a local bar called the Sportsman's Club: showing off the strength of his electric arm motor. (Actually the arm has no lateral force, only frontal, but the hand does have more gripping power than a normal hand.)
    USA_SCI_MEARM_07_xs.jpg
  • Bob Goodman, a rancher in Halfway, Oregon, lost his arm in a freak accident. Researchers at the University of Utah gave him a myoelectric arm, which he controls by flexing the muscles in his arm that are still intact. Sensors on the inside of the prosthetic arm socket pick up the faint electrical signals from the muscles and amplify them to control the robot arm. In this way, Goodman can do most things as he did before his accident. Here he is using a drill press in the workshop in his barn.
    USA_SCI_MEARM_04_xs.jpg
  • Bob Goodman, a rancher in Halfway, Oregon, lost his arm in a freak accident. Researchers at the University of Utah gave him a myoelectric arm, which he controls by flexing the muscles in his arm that are still intact. Sensors on the inside of the prosthetic arm socket pick up the faint electrical signals from the muscles and amplify them to control the robot arm. In this way, Goodman can do most things as he did before his accident.
    USA_SCI_MEARM_02_xs.jpg
  • Bob Goodman, a rancher in Halfway, Oregon, lost his arm in a freak accident. Researchers at the University of Utah gave him a myoelectric arm, which he controls by flexing the muscles in his arm that are still intact. Sensors on the inside of the prosthetic arm socket pick up the faint electrical signals from the muscles and amplify them to control the robot arm. In this way, Goodman can do most things as he did before his accident. Here he is putting his arm on right after he wakes up and gets dressed in his bedroom.
    USA_SCI_MEARM_01_xs.jpg
  • Bill Haeck of Rock Springs, Wyoming is an avid hunter who relies on his artificial myoelectric arm to continue his hobby after losing his arm in an accident.  Researchers at the University of Utah gave him a myoelectric arm, which he controls by flexing the muscles in his arm that are still intact. Sensors on the inside of the prosthetic arm socket pick up the faint electrical signals from the muscles and amplify them to control the robot arm. In this way, Haeck can do most things as he did before his accident but he often forgets to charge the battery. Seen here target shooting behind his house.
    USA_SCI_MEARM_09_xs.jpg
  • Bob Goodman, a rancher in Halfway, Oregon, lost his arm in a freak accident. Researchers at the University of Utah gave him a myoelectric arm, which he controls by flexing the muscles in his arm that are still intact. Sensors on the inside of the prosthetic arm socket pick up the faint electrical signals from the muscles and amplify them to control the robot arm. In this way, Goodman can do most things as he did before his accident.
    USA_SCI_MEARM_05_xs.jpg
  • Teenaged land mine victim recovering in a hospital in Hargeisa, Somaliland?the breakaway republic in northern Somalia that declared independence in 1991 after 50,000 died in civil war. The three leading causes of death in Somalia are gastro-enteritis, T.B. and trauma, mostly from land mines, gun shots, and car accidents. March 1992.
    SOM_40_xs.jpg
  • Metal posts placed precisely using a robotic system provide a stable anchor for magnetic attachment of artificial body parts at the Virchow Campus Clinic, Humboldt University, Berlin, Germany.
    Ger_rs_238_xs.jpg
  • Testing the "Utah myoelectric arm" over many hours, a worker at Iomed, Inc, in Salt Lake City, Utah reads a book as he opens and closes his own hand which in turn causes the electric arm to mimic his movements.
    USA_SCI_MEARM_06_xs.jpg
  • Metal posts placed precisely using a robotic system provide a stable anchor for magnetic attachment of this artificial body part at the Virchow Campus Clinic, Humboldt University, Berlin, Germany. Robo sapiens Project.
    Ger_rs_100_xs.jpg
  • In Tokyo, Japan, REONA, a life-sized silicon sex doll sells for $7,500 (U.S.). The doll was shown at the apartment of the creator, a designer of artificial prosthetics, in a small room that served as his office. It was slouched in a leather chair dressed in a silk pajama and pantyhose. He changed the clothes to show the full figure, including private parts, which are removable and washable (not inserted for the photo). The doll is moved around by wheelchair. Its cold clammy skin was not a problem, assured the designer. "The doll has great thermoconductive properties. You can put an electric blanket on it for a while and it will retain body heat for a long time."
    Japan_Jap_rs_73_xs.jpg

Peter Menzel Photography

  • Home
  • Legal & Copyright
  • About Us
  • Image Archive
  • Search the Archive
  • Exhibit List
  • Lecture List
  • Agencies
  • Contact Us: Licensing & Inquiries