Show Navigation

Search Results

Refine Search
Match all words
Match any word
Prints
Personal Use
Royalty-Free
Rights-Managed
(leave unchecked to
search all images)
{ 26 images found }

Loading ()...

  • Yoga/Meditation classes with Global Fitness Adventures Health Spa, Sedona, Arizona..
    USA_AZ_24_xs.jpg
  • Mark Loizeaux & Steve Pettigrew review plans for placement of explosives. Controlled Demolition, Inc, used explosives to demolish an aging housing project near Paris. The Loizeaux brothers run the world's most famous demolition company founded by their father. Mark Loizeaux films and watches the demolition as his brother Doug pushes the detonation controller. La Courneuve, France. MODEL RELEASED..
    FRA_039_xs.jpg
  • Krakow, Poland tourists with dog.
    POL_031706_003_x.jpg
  • Getting directions from local people on a park bench in Merida, Mexico, Yucatan.
    MEX_147_xs.jpg
  • A free Mexican wine tasting event at Copia: The American Center for Wine, Food and the Arts in Napa, California. Napa Valley. Copia brought the vintners, restaurateurs and artists of this vibrant, up-and-coming wine region to Napa for a festive celebration of cuisine and culture. (Sixty-five miles south of San Diego lies a region some believe to be the ?next Napa Valley.? Wineries in the Guadalupe, Santo Tomas and San Vicente valleys produce 95% of the wine made in Mexico, and their sophisticated, distinctive wines are winning awards, boosting tourism and drawing wine lovers from all over the world.)..COPIA is proud to bring the vintners, restaurateurs and artists of this vibrant, up-and-coming wine region for a festive celebration of cuisine and culture. Enjoy dozens of wines from 19 wineries paired with zesty nibbles created by local chefs, as you meet the winemakers and chefs.
    USA_060128_10_rwx.jpg
  • Dispatchers who are former bike messengers with lots of experience at T-Serv Bike Messenger service in Tokyo, Japan, talk to delivery messengers on the streets via radio from their control room. (From the book What I Eat: Around the World in 80 Diets.)  MODEL RELEASED.
    Japan_JAP_060531_039_xxw.jpg
  • Ralph Hollis of IBM at Yorktown Heights, N.Y. demonstrates a tele-nanorobotic manipulation system with atomic scale force feedback. A scanning tunneling microscope that is probing the surface of gold is linked to a force-feedback "magic wrist" which moves as the microscope probe maps out the atomic structure, enabling the user to "feel" the atoms. In the background is a color image of the gold's atomic surface structure. The other two researchers who worked on the system are (Tim).S. Salcudean, and David W. Abraham. Model Released
    USA_SCI_MICRO_05_xs.jpg
  • USA_SCI_BIOSPH_85_xs <br />
Biosphere 2 Project founder John Allen with map of the planet Mars. Allen is pointing to what he thinks is a probable landing/colony site on the Mars map. Biosphere 2 was a privately funded experiment, designed to investigate the way in which humans interact with a small self-sufficient ecological environment, and to look at possibilities for future planetary colonization. The $30 million Biosphere covers 2.5 acres near Tucson, Arizona, and was entirely self- contained. The eight ‘Biospherian’s’ shared their air- and water-tight world with 3,800 species of plant and animal life. The project had problems with oxygen levels and food supply, and has been criticized over its scientific validity. 1990
    USA_SCI_BIOSPH_85_xs.jpg
  • Research on the human genome: laboratory at Columbia University, Lee Hood Lab, New York, showing row of electrophoresis gels used for DNA sequencing experiments on human chromosomes. DNA sequencing involves decoding the base pair sequence of sections of DNA - most usefully, those sections called genes which encode specific proteins. Sequencing and mapping - surveying each of the 23 pairs of human chromosomes to locate genes or other important markers - are two phases in the human genome project. Constructing such a complete genetic map involves a detailed biochemical survey of every gene expressed on all 23 pairs of human chromosomes.
    USA_SCI_HGP_33_xs.jpg
  • Research on the human genome: composite image of an infant and a computer graphics model of the DNA molecule overlaid on a computer enhanced DNA sequencing autoradiogram. DNA sequencing of chromosomes involves decoding the base pair sequence of sections of DNA - most usefully, those sections called genes which encode specific proteins. Sequencing and mapping - surveying each of the 23 pairs of human chromosomes to locate genes or other important markers - are two phases in the human genome project. The construction of such a complete genetic map involves a detailed biochemical survey of every gene expressed on all 23 pairs of human chromosomes.  (1989).
    USA_SCI_HGP_17_xs.jpg
  • Research on the human genome: composite image of an infant and a computer graphics model of the DNA molecule overlaid on a computer enhanced DNA sequencing autoradiogram. DNA sequencing of chromosomes involves decoding the base pair sequence of sections of DNA - most usefully, those sections called genes which encode specific proteins. Sequencing and mapping - surveying each of the 23 pairs of human chromosomes to locate genes or other important markers - are two phases in the human genome project. The construction of such a complete genetic map involves a detailed biochemical survey of every gene expressed on all 23 pairs of human chromosomes. (1989).
    USA_SCI_HGP_16_xs.jpg
  • Sewer inspection robot. Kurt I, a sewer inspection robot prototype. Here, the robot is moving through a simulated sewer at a German government-owned research and development centre. Unlike its predecessors, the Kurt I, and its successor, Kurt II, are cable-less, autonomous robots, which have their own power supply and piloting system. Kurt uses two low-powered lasers (upper centre) to beam a grid (red, lower centre) into its path. When the gridlines curve, indicating a bend or intersection in the pipe, the robot matches the curves against a digital map in its computer. It will then pilot itself to its destination. Photographed in Bonn, Germany.
    Ger_rs_40_xs.jpg
  • Fluorescence micrograph of human chromosomes showing the mapping of cloned fragments of DNA (DNA probes) to the long arms of chromosome 11. In this image, the chromosomes are stained to give red fluorescence, with the probes appearing as areas of green/yellow fluorescence on the ends of the chromosomes. Mapping chromosomes may be regarded as a physical survey of each chromosome to find the location of genes or other markers. Mapping & sequencing (decoding the base-pair sequence of all the DNA in each chromosome) are the two main phases of the human genome project, an ambitious plan to reveal all of the genetic information encoded by every human chromosome.
    USA_SCI_HGP_19_xs.jpg
  • Scientist works in a darkroom; preparing to photograph an agarose electrophoresis gel used in mapping DNA extracted from chromosomes of the bacteria Escherichia coli. DNA mapping refers to a physical survey of each of an organism's chromosomes in an attempt to locate genes or other landmarks. Mapping and sequencing (decoding the DNA base-pair sequences of chromosomes) are the two phases of the human genome project, an ambitious plan to reveal all of the information encoded in the 23 pairs of human chromosomes.  Dr Jonathan Beckwith's laboratory at Harvard, USA, May 1989.
    USA_SCI_HGP_13_xs.jpg
  • Research on the human genome: Dr Peter Lichter, of Yale Medical School, using a light microscope to do fine mapping of long DNA fragments on human chromosomes using a technique known as non- radioactive in-situ hybridization. The chromosomes appear in red on the monitor screen, whilst the DNA fragments (called probes) appear yellow/green. Mapping chromosomes may be regarded as a physical survey of each chromosome to find the location of genes or other markers. Mapping & sequencing are the two main phases of the genome project; an ambitious plan to build a complete blueprint of human genetic information..Human Genome Project.
    USA_SCI_HGP_07_xs.jpg
  • Fluorescence micrograph of human chromosomes showing the anonymous mapping of cloned fragments of DNA (DNA probes) on chromosome 6. The chromosomes are stained to give red fluorescence, with the DNA probes represented by regions of green/yellow fluorescence. Mapping chromosomes may be regarded as a physical survey of each chromosome to find the location of genes or other markers. Mapping & sequencing (decoding the base-pair sequence of all the DNA in each chromosome) are the two main phases of the human genome project, an ambitious plan to reveal all of the genetic information encoded by every human chromosome. Magnification: x12500 at 35mm size.
    USA_SCI_HGP_34_xs.jpg
  • Montage of a fluorescence micrograph of human chromosomes showing the mapping of cloned fragments of DNA (DNA probes), overlaid with the silhouette of an infant & a computer graphics model of the DNA molecule. The chromosomes are stained to give red fluorescence; with the DNA probes represented as small regions of green/yellow fluorescence. Mapping chromosomes may be regarded as a physical survey of each chromosome to find the location of genes or other markers. DNA mapping is one phase of the human genome project, an ambitious plan to reveal all of the genetic information encoded by every human chromosome.
    USA_SCI_HGP_18_xs.jpg
  • (1992) Ray White in his lab at the Howard Hughes Medical Institute, with the genetic map of his family used in his "linkage strategy". DNA Fingerprinting. MODEL RELEASED
    USA_SCI_DNA_32_xs.jpg
  • Kurt I, a 32-cm-long robot, crawls through a simulated sewer network on the grounds of the Gesellschaft für Mathematik und Datenverabeitung-Forschungs-zentrum Informationstechnik GmbH (GMD), a government-owned R&D center outside Bonn, Germany. Every ten years, Germany's 400,000 kilometers of sewers must be inspected, at a cost of $9 per meter. Today, vehicles tethered to long data cables explore remote parts of the system. Because the cables restrict the vehicle's mobility and range, GMD engineers have built Kurt I, which crawls through sewers itself. To pilot itself, the robot?or, rather, its successor model, Kurt II?will use two low-power lasers to beam a checkerboardlike grid into its path. When the gridlines curve, indicating a bend or intersection in the pipe ahead, Kurt II will match the curves against a digital map in its "brain" and pilot itself to its destination. From the book Robo sapiens: Evolution of a New Species, page 194
    GER_rs_6_qxxs.jpg
  • Professor Robert J. Full, in front of a poster of a ghost crab, in his Poly-PEDAL biology lab at UC Berkeley. Full studies animal locomotion on miniaturized treadmills, using hi-speed imaging and force measurements to map out how these creatures actually propel themselves. Cockroaches, crabs, geckos, centipedes have all been studied intently. Full's Poly-PEDAL Lab at UC Berkeley has been working with roboticists for years, supplying them with information on small animal locomotion that is used to construct innovative robots. UC Berkeley, CA, USA.
    Usa_rs_663_xs.jpg
  • Circular computer scanner used to read sections of DNA sequencing autoradiograms for subsequent computer analysis, part of the human genome project studies at Cal Tech, Lee Hood Lab, USA. The term genome describes the full set of genes expressed by an organism's chromosomes. A gene is a section of DNA that instructs a cell to make a specific protein. The task of constructing such a complete blueprint of genetic information for humans is divided into two main phases: mapping genes and other markers on chromosomes, and decoding the DNA sequences of genes on all the chromosomes. Numerous laboratories worldwide are engaged on various aspects of genome research.
    USA_SCI_HGP_29_xs.jpg
  • Circular computer scanner used to read sections of DNA sequencing autoradiograms for subsequent computer analysis, part of the human genome project studies at Cal Tech, Lee Hood Lab, USA. The term genome describes the full set of genes expressed by an organism's chromosomes. A gene is a section of DNA that instructs a cell to make a specific protein. The task of constructing such a complete blueprint of genetic information for humans is divided into two main phases: mapping genes and other markers on chromosomes, and decoding the DNA sequences of genes on all the chromosomes. Numerous laboratories worldwide are engaged on various aspects of genome research.
    USA_SCI_HGP_30_xs.jpg
  • Harvard scientist Walter Gilbert studying a DNA sequencing autoradiogram, made in the course of research associated with the human genome project. The term genome describes the full set of genes expressed by an organism's chromosomes. A gene is a section of DNA that instructs a cell to make a specific protein. The task of constructing such a complete blueprint of genetic information for humans is divided into two main phases: mapping genes and other markers on chromosomes, and decoding the DNA sequences of genes on all the chromosomes. Numerous laboratories worldwide are engaged on various aspects of genome research. MODEL RELEASED.
    USA_SCI_HGP_26_xs.jpg
  • Conical flask containing a swirling vortex of liquid; one item of equipment used in Charles Cantor's laboratory at Columbia University, New York, in research on the human genome project. Colored radiograms used in DNA sequencing are visible in background to the left of the flask. The term "genome" describes the full set of genes expressed by an organism's chromosomes. The task of constructing such a complete blueprint of genetic information for humans is divided into two main phases: mapping genes and other markers on chromosomes, and decoding the DNA sequences of genes on all the chromosomes.
    USA_SCI_HGP_20_xs.jpg
  • Research on the human genome: Caltech scientist Kai Wand loading an electrophoresis gel into a computer-controlled system used for DNA sequencing of human chromosomes. DNA sequencing involves decoding the base pair sequence of sections of DNA encode specific proteins. Sequencing and mapping chromosomes to locate genes or other important markers - are two phases in the human genome project. The human genome is a complete genetic blueprint - a detailed plan of every gene expressed in all 23 pairs of human chromosomes. MODEL RELEASED (1989).
    USA_SCI_HGP_14_xs.jpg
  • Research on the human genome: Caltech scientist Leroy Hood preparing an electrophoresis gel used in a computer-controlled system for DNA sequencing of human chromosomes. DNA sequencing involves decoding the base pair sequence of sections of DNA encode specific proteins. Sequencing and mapping chromosomes to locate genes or other important markers - are two phases in the human genome project. The human genome is a complete genetic blueprint - a detailed plan of every gene expressed on all 23 pairs of chromosomes. MODEL RELEASED (1989).
    USA_SCI_HGP_08_xs.jpg

Peter Menzel Photography

  • Home
  • Legal & Copyright
  • About Us
  • Image Archive
  • Search the Archive
  • Exhibit List
  • Lecture List
  • Agencies
  • Contact Us: Licensing & Inquiries