Info

DB gazes intently at the camera by means of two pairs of lenses in each "eye." In a configuration increasingly common in humanoid robots, one lens in each pair sharply focuses on the center of the visual field while the other gives a broader perspective. These two points of view, surprisingly, mimic the human eye, which seamlessly blends together information from the fovea centralis, a small area of precise focus in the center of the retina, and the parafovea, a larger, but much less acute area surrounding the fovea. Similarly, DB has a vestibular system in its ears, vestibular systems being the inner-ear mechanisms that people use to balance themselves. The DB project is funded by the Exploratory Research for Advanced Technology (ERATO) Humanoid Project and led by independent researcher Mitsuo Kawato. Based at a research facility 30 miles outside of Kyoto, Japan.

Filename
Japan_JAP_rs_235_qxxs.jpg
Copyright
© 2000 Peter Menzel, www.menzelphoto.com, Robo Sapiens
Image Size
688x1024 / 231.5KB
Contained in galleries
DB gazes intently at the camera by means of two pairs of lenses in each "eye." In a configuration increasingly common in humanoid robots, one lens in each pair sharply focuses on the center of the visual field while the other gives a broader perspective. These two points of view, surprisingly, mimic the human eye, which seamlessly blends together information from the fovea centralis, a small area of precise focus in the center of the retina, and the parafovea, a larger, but much less acute area surrounding the fovea. Similarly, DB has a vestibular system in its ears, vestibular systems being the inner-ear mechanisms that people use to balance themselves.  The DB project is funded by the Exploratory Research for Advanced Technology (ERATO) Humanoid Project and led by independent researcher Mitsuo Kawato. Based at a research facility 30 miles outside of Kyoto, Japan.